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Abstract — Traditionally, in reverberation chambers (RC) 

measurement autocorrelation or correlation-matrix methods have 

been applied to evaluate measurement correlation. In this article, 

we introduce the use of clustering based on correlative distance to 

group correlated measurements. We apply the method to 

measurements taken in an RC using one and two paddles to stir 

the electromagnetic fields and applying decreasing angular steps 

between consecutive paddles’ positions. The results – using 

varying correlation threshold values – demonstrate that the 

method calculates the number of effective samples and allows 

discerning outliers, i.e., uncorrelated measurements, and clusters 

of correlated measurements. This calculation method, if verified, 

will allow non-sequential stir sequence design and, thereby, reduce 

testing time. 
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I. INTRODUCTION 

Since mobile phones became popular, in the 1990s, the use 

of wireless communication devices has grown at a very fast rate 

and today pervades many aspects of modern life. Wireless 

computing, uncrewed vehicles, internet-of-things (IoT) and 

industrial IoT (IIoT), handheld mobile devices, and radar 

communications are only a few examples of wireless 

communication applications [1]. 

Reverberation chambers (RCs) can be used to test both 

small and large wireless devices. RCs are typically rectangular 

parallelepipedic shielded resonating cavities that support a 

large set of resonant electromagnetic (EM) waves. RCs are 

usually equipped with paddles that stir the EM fields preventing 

the formation of static minima and maxima regions of field 

amplitudes [2]-[4]. Other mechanisms can be used to stir the 

fields and to move devices under test (DUT) to different 

positions (e.g., turntables, positioners). Other procedures, such 

as changes in antenna orientation or switching between 

antennas, can also be used to change or sample the EM fields at 

different physical locations. EM field boundary conditions are 

also significantly changed by the presence of RF absorbers.  

Correlation between mode-stirring samples has the adverse 

effect of reducing measurement efficiency but can be a 

necessary trade-off for the accurate measurement of modulated 

signals [4]. When correlation exists between RC measurement 

samples the experiment must be designed to avoid an 

insufficient number of uncorrelated samples necessary for a 

desired measurement uncertainty [5]. Consequently, to conduct 

accurate and efficient RC experiments, correlations between 

measurement samples must be evaluated.  

Evaluation of correlation in RC-related experiments has 

been a concern for wireless industry and researchers for more 

than 30 years [6] and the efficiency of stirrers has been assessed 

using different approaches. IEC 61000-4-21 adopts a method 

that uses a power-based thresholded correlation coefficient and 

assumes that the stirrer positions are distributed evenly [7], [8]. 

Pfennig and Krauthäuser developed a general method based on 

the PCC for each frequency and the stirrer positions. The 

positions are regarded as independent if the PCC is less than a 

correlation threshold, algorithms then identify groups of 

independent stirrer positions [8]-[10]. Gradoni and co-workers 

evaluated mode-stirring efficiency in RCs using uniformly 

distributed grid of points inside the chamber. Their results 

showed that circular correlation methods overestimate stirrer 

efficiency [11]. A correlation matrix-based method using 

complex S21-parameters was introduced by Pirkl et al. [5], in 

the method independent observations obtained from a range of 

frequencies were used to form Pearson correlation matrices. 

The method introduced in this paper uses the concept of 

correlative distance between S21-parameter measurements in 

the set of real numbers (ℝ) to build an adjacency matrix and 

group correlated data into clusters. It allows the calculation of 

the number of effective samples for any given threshold (rlim) 

applied to the PCC through the identification of both outliers, 

i.e., measurements that have no correlation to any other 

measurement, and clusters, i.e., groups of two or more 

correlated measurements.   

II. DERIVATION OF THE METHOD 

Any two sets of n real variables X = {X1, X2,…, Xn} and Y = 

{Y1, Y2,…, Yn} can be standardized into variables x = {xi} and y 

= {yi}, with means x̄ = 0 and ӯ = 0, and with standard deviations 

computed with the n-method given by sx = 1.0 and sy = 1.0 [12]. 

The PCC (rX,Y) between X and Y data sets can then be calculated 

from: 

𝑟𝑋,𝑌 =
1

𝑛
∑ 𝑥𝑖𝑦𝑖                                         (1) 

Using the equation above, the squared Euclidean distance d 

between x and y can be proven to be [12, 13]: 

𝑑2 =  ∑(𝑥𝑖 − 𝑦𝑖)
2 = 2𝑛(1 − 𝑟𝑋,𝑌)                      (2) 

The squared distance d, as shown above, is proportional to 1 - 

rX,Y and the square root of the last term in (2) is the correlative 

distance between x and y [12].  

Correlation between measurements in RCs can be calculated 

using complex S21-parameters recorded over pre-defined 

frequency intervals. PCC between position 1 and position 2 of 



any two different configurations (throughout the paper the term 

“configuration” refers to a specific position of the paddles that 

can be used to generate one sample) can be calculated as [4]: 

𝜌(𝑓) = |
∑[(𝑆21,1−𝑆21,1̅̅ ̅̅ ̅̅ ̅)(𝑆21,2−𝑆21,2̅̅ ̅̅ ̅̅ ̅)∗]

√∑[|(𝑆21,1−𝑆21,1̅̅ ̅̅ ̅̅ ̅)|
2

]√∑[|(𝑆21,2−𝑆21,2̅̅ ̅̅ ̅̅ ̅)|
2

]

|                (3)                                    

where (*) is the complex conjugate. An n-tuple sequence of 

sampled frequency-dependent complex S21-parameters {S21,1 = 

a1 + ib1, S21,2 = a2 + ib2,…, S21,n = an + ibn} ∈ ℂn can be 

rewritten as a 2n-tuple sequence {a1, a2,…, an, b1, b2,…, bn} ∈ 
ℝ2n. In ℝ2n, PCC between configurations can then be computed 

using (1) and although the numeric values of the PCC values 

calculated in ℂn using (3) are not the same as the ones calculated 

in ℝ2n using (1), the values are very close.  

The application of (2) to complex S21-parameter stirring-

sequence samples represented in ℝ2n allows the calculation of 

the correlative distance matrix (CDM), where each element 

corresponds to the numerical value of the correlative distance 

between measurements i and j:    

𝑑𝑖,𝑗 = √2𝑛(1 − 𝑟𝑖,𝑗)                            (4) 

CDMs can be used to determine whether the correlation 

between any pair of measurements is beyond some correlative 

distance threshold (dthrs) that can also be computed using (4) 

and the predefined PCC threshold (rthrs). Instead of using CDMs 

with the correlative distance values, binary CDMs (with entries 

equal to 1 when correlation between measurements is above the 

threshold and 0 if it is not) can be adopted to form what we term 

correlative distance adjacency matrices. The analysis of these 

adjacency matrices, for a given threshold, allows the 

identification of measured samples that are not correlated to any 

other (outliers) and of groups of two or more samples that are 

correlated (clusters). The number of effective samples (Neff) can 

then be determined by adding the number of outliers (Noutls) and 

the number of clusters (Nclust): 

𝑁eff =  𝑁outls + 𝑁clust                      (5) 

It is assumed that all measurements within a cluster, since they 

are correlated to each other, correspond to one effective sample 

only.  

III. RESULTS FROM AN RC WITH TWO PADDLES 

Results presented in this section are based on measurements 

performed in a large, double-paddled reverberation chamber 

equipped with a turntable and a vertical positioner and loaded 

with four absorbers. The chamber (dimensions 4.27 m x 3.65 m 

x 2.90 m) has a vertical and a horizontal cylindrical paddle 

(lengths 2.50 m and 3.30 m, respectively, and both with 0.55 m 

radius to the tip of paddle). A dual-ridged horn antenna 

(bandwidth 1 GHz – 18 GHz) was used to transmit the signals 

and a discone antenna to receive (bandwidth 0.65 GHz - 3.5 

GHz), Fig. 1 shows both antennas inside the chamber. In the 

configuration of the chamber, a total of 360 paddle positions 

(1° steps) were used in the vertical paddle rotation and 2 

positions only in the horizontal paddle (0° and 180°), whereas 

the turntable and the positioner were kept at fixed positions. 

 

 
Figure 1: Pictures of the transmit antenna (horn antenna, left) and receive 

antenna (discone, right) inside the chamber.  

 

The following parameters were used in the vector network 

analyzer (VNA): center frequency 2.575 GHz, bandwidth 3.85 

GHz, and 1 kHz IF bandwidth; frequencies, therefore, ranged 

from 650 MHz to 4.5 GHz, with frequency points read at 0.25 

MHz intervals for a total of 15401 points. Coherence bandwidth 

(CBW) for the full frequency range is 3.628 MHz and for center 

frequencies 1.5, 2.5, 3.5 GHz and bandwidth 1.0 GHz,  CBWs 

are 3.603, 3.517, 3.505 MHz, respectively.  

For this set-up, using the entire frequency range and the 

vertical paddle only, the coherence angles computed using the 

autocovariance method described in [5] for rthrs = 0.37, 0.5, and 

0.707 are, respectively, approximately 21°, 18°, and 11° 

corresponding to Neff = 17 (360o/21o = 17), 20 (360o/18o = 20), 

and 33 (360o/11o = 33). For the same thresholds, the clustering 

approach introduced here yields Neff = 1, 20, and 50, 

respectively. The discrepancy between the results is under 

investigation. It is worth emphasizing that the autocorrelation 

method is restricted to physically adjacent paddle angles, while 

no such restrictions exist in the clustering approach, besides, 

correlation methods have been reported to overestimate stirrer 

efficiency [11].  

In the examples below, the clustering method estimates the 

average Neff over the entire range of frequencies, nonetheless, 

any subset of frequencies with any number of frequency points 

can be used. The complex S21-parameters were stored in a c-

configurations’ by f-frequencies’ matrix X ∈ ℂ c x f.  

Example 1 In this example, the vertical paddle was at a 

fixed position, while in the horizontal paddle only angles 

spaced 20o were measured, resulting in a total of 18 

configurations (c = 18), corresponding to angles 0o, 20o, 40o, … 

340o. Using all frequency points, a complex matrix X ∈ ℂ 18 x 

15401 was used in the analysis. For a threshold distance rthrs = 

0.470, and real matrix X ∈ ℂ 18 x (2·15401), the correlative distance 

threshold is dthrs = 180.7 (4) and the resulting correlative 

distance adjacency matrix is shown in Fig. 2.  

As expected, since rX,Y = rY,X, the matrix is symmetric. The 

diagonal is not represented since any configuration is correlated 

to itself (PCC = 1.0). Outliers are represented by rows (or 

columns) with no markers, i.e., no correlation with any other 

configuration. In Fig. 2, configurations 3 and 4 are outliers. 

Clusters are pairs or larger groups of configurations where any 

element is correlated to at least one other element in the cluster. 

In Fig. 2, markers on row 1 (or column 1) show correlation 



between configurations 1 and 2 and also 1 and 18; group {1, 2, 

18}, therefore, together form a cluster. Another cluster, with 2 

configurations only, is formed by configurations 5 and 6. A 

third cluster is defined by configurations represented in rows 7 

to 10: {7, 8, 9, 10}. Cluster 4 is composed of 11, 12, 13, and 14. 

Finally, the last cluster includes configurations 15, 16, 17. The 

number of effective samples is Neff = 7 (5), where two are 

outliers (Noutls = 2), and five are clusters (Nclust = 5). Since all 

configurations in each cluster can be replaced by one of the 

configurations, clusters can be used to design stirring sequences 

with non-equally spaced samples. It is also important to 

emphasize that the analysis, although presented here for the 

whole frequency range, can be used to any arbitrary subset.  

 
Figure 2: Correlative distance adjacency matrix: the red markers represent 

configurations with correlation above rthrs between measurements. In row 1, the 

red markers indicate correlation between configuration 1 and 2 and between 1 

and 18; together, configurations 1, 2, and 3 form a cluster.  

Example 2 The horizontal paddle angles are now spaced 6o, 

resulting in 60 configurations, whereas the vertical paddle 

remains at a fixed position. Matrix X is now 60 by 15401 and 

for the threshold distance rthrs = 0.729 the following adjacency 

matrix results (Fig. 3), with 12 clusters and 25 outliers, for a 

total number of effective samples Neff = 37. 

Correlation between successive positions, e.g., {18, 19}, 

{34, 35}, and {59, 60}, with the markers close to the main 

diagonal of the correlative distance matrix, is due to the fact that 

the paddle moves to successive neighboring positions, as the 

angle increases, such as {18, 19} = {108o, 114o}, and 

neighboring positions tend to be correlated, because the 

distance between them is the 6o step used in the analysis. Were 

other stirring mechanisms being used, off-diagonal correlations 

could occur, creating clustered configurations in any region of 

the adjacency matrix.   

 
Figure 3: Correlative distance adjacency matrix: angle step size 6o, resulting in 

60 configurations with paddle angles 0o, 6o, 12o,… 354o.  

 

A study showing the variation of the number of effective 

samples as the threshold rthrs varies from 0.0 to 1.0 shows 

interesting aspects of the chamber and stirring mechanisms 

behavior (Fig. 4).  

 
Figure 4: Variation of the number of clusters and effective samples as the 

threshold distance varies from 0.0 to 1.0 for a stirrer step size of 6°.  

 

As shown on Fig. 4, for low values of the threshold, less than 

approximately 0.7, there are no outliers (blue line) and all 

measurements are correlated, forming a big cluster containing 

all measurements (black and red lines). As the threshold 

increases, in the [0.70, 0.729] interval, the number of clusters 

and outliers then increase up to the point where the number of 

clusters reaches a maximum, at rthrs = 0.729 (Fig. 3). Beyond 

that point, i.e., the point where the number of clusters reaches a 

maximum, the increase in rthrs begin to extract mode-stirring 

samples from the clusters, as the correlation condition gets 

more restrictive. The number of clusters then decreases to zero, 

as the number of outliers equals the total number of mode-

stirring samples in the analysis (60, corresponding to 6o steps). 

This result is expected, since beyond some threshold values (in 

Fig. 4. rthrs = 0.750) all samples will be uncorrelated. The 

application of the proposed method with rthrs varying from 0.0 

to 1.0 allows the understanding of how the mode-stirring 

samples behave in terms of being correlated or not correlated. 

The analysis of the clusters allows the evaluation of the 

efficiency of the stirring mechanisms.  

The method proposed here is compared to the approach used 

by Pirkl et al. [5]. The method estimates the number of effective 

samples from the quotient of the squared number of 

configurations (N) and the sum of the complex correlation 

matrix entries (ri,j) absolute values squared (Eq. 12 in [5]): 

𝑁𝑒𝑓𝑓 =
𝑁2

∑ |𝑟𝑖𝑗|
2𝑁

𝑖,𝑗=1

                            (6) 

As depicted in Fig. 4, while Pirkl’s method shows no variation 

as the threshold increases – and this happens because the 

threshold value is not a parameter in (6) – the method presented 

here shows no outliers and only one cluster (containing all 

samples) before, approximately, rthrs = 0.7. Beyond this point, 

the method captures a steep increase in the number of effective 

samples as rthrs varies from approximately 0.700 to 0.75; the 

method then reaches and stays at the maximum number of 

effective samples (Neff = 60) in the interval 0.75 < rthrs ≤ 1.0. 

The sharp increase in the number of effective samples and the 

permanence in the highest Neff plateau is a consequence of the 



stricter requirement – very high rthrs (3) – for any two samples 

to be considered correlated; in the limit, for very small angular 

difference between measurements, only at rthrs = 1.0 the 

measurements will be rendered uncorrelated. In the interval 0.7 

< rthrs < 0.75, the method shows an increase and then a decrease 

in the number of clusters. The maximum number of clusters 

(red line) is 12 and occurs at rthrs = 0.729 (correlative distance 

adjacency matrix shown in Fig. 3). 

Example 3 In this example, both paddles are used: the 

vertical paddle with the most refined angular step (1o, 360 

positions) and the horizontal paddle at 0° and 180° (2 

positions), resulting on a total of 720 mode-stirring samples. 

The variation of the number of effective samples as the 

threshold increases is shown in Fig. 5.  

 
Figure 5: (a) Variation of the number of clusters and effective samples using 

both the vertical (360 positions, 1o steps) and the horizontal paddle (2 positions, 

0o and 180o). (b) Detail of the y-interval [0, 60] (0 ≤ Neff ≤ 60) showing the 

decoupling of the horizontal paddle positions at rthrs = 0.255 and the increase 

and decrease in the number of clusters at rthrs > 0.97. 

 

As expected, the number of effective samples shows a steep 

increase as the threshold approaches 1.0 (rthrs > 0.97, 

approximately) to reach the maximum number of effective 

samples Neff = 720. The formation of clusters and the steep 

increase in the number of effective samples close to rthrs = 1.0 

indicates that the mode-stirring samples are very strongly 

correlated, which is a consequence of the low step angle used 

in the analysis (only 1o). Since the difference between 

consecutive positions is small, only when the correlation 

threshold is very close to 1.0 the measurements are perceived 

as uncorrelated. In Fig. 5b (detail of the vertical axis [0, 60] 

interval) the increase from 1 to 2 effective samples at rthrs = 

0.255 shows a decoupling of the 360 vertical paddle positions 

associated with position 0o of the horizontal paddle position and 

the 360 vertical paddle positions associated with position 180o 

in the horizontal paddle. This demonstrates that the 180o 

difference in the horizontal paddle positions creates 

uncorrelated sets of configurations (in the vertical paddle 

positions) detectable at a very low threshold: rthrs = 0.255. The 

increase and decrease in the number of clusters is also readily 

visible at 0.97 < rthrs < 0.99. Pirkl’s approach remains constant, 

as the method (5) does not account for variations in rthrs.  

IV. CONCLUSION 

We presented a method that allows a thorough analysis of 

correlation between mode-stirring samples generated in RC 

environments equipped with paddles. The method is based on 

the correlative distance between S21-parameter n-tuples 

measured from mode-stirring samples (in complex space ℂ) 

represented as 2n-tuples of real numbers (in real space ℝ). The 

distance between measurements represented in ℝ can be 

directly associated with PCC and a clustering scheme can be 

employed to analyze correlation.  

Examples to validate the proposed method showed that it 

can be used to calculate the number of total effective samples 

and demonstrated that the clusters formed in the analysis group 

correlated mode-stirring samples’ measurements. Clusters can 

then be used to implement stirring sequences with non-equally 

spaced paddle angles. 
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